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ABSTRACT

In addition to the useful physical properties of biphasic systems
(easy separation of products and catalyst, facile catalyst reuse)
aqueous media may largely influence the chemistry of catalytic
reactions. By appropriate pH manipulations, the selectivity of
hydrogenation of unsaturated aldehydes with ruthenium(Il) phos-
phine catalysts was controlled from the exclusive formation of
saturated aldehydes to that of unsaturated alcohols. Phase separa-
tion of the constituents of catalytic systems eliminated substrate
inhibition (hydrogenation of aldehydes) and helped formation of
catalytically active species ([RhH(PPhs)s] from [RhCI(PPhs)s] in
hydrogenation of acetophenone). The reactive nature of H,O was
revealed by fast catalysis of H/D exchange and deuteration
processes.

Introduction

Homogeneous transition metal catalysis in solutions has
much to offer with regard to activity and selectivity. The
outstanding achievements in enantioselective catalysis
have just recently been recognized by the year 2001 Nobel
Prize in Chemistry. Of the long list of homogeneously
catalyzed enantioselective reactions, only the hydrogena-
tion of prochiral enamides and ketones, which can be
carried out with practically 100% enantioselectivity using
rhodium and ruthenium complexes of specially designed
chiral phosphine, amine or other ligands, is mentioned
here. Such a precision catalysis has far-reaching conse-
quences on the design of green chemical processes, since
it allows selective synthesis of the desired products with
no contamination by useless or often toxic byproducts.
In addition to its importance in fine chemicals synthesis,
homogeneous transition metal catalysis is also practiced
in production of bulk chemicals, exemplified by oligo-
merization, coordination polymerization and hydroformy-
lation of alkenes, and many other processes. Nevertheless,
a wider use of homogeneous catalysis is hampered by the
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FIGURE 1. General arrangement for liquid biphasic catalysis.

difficulties of catalyst recovery and recycling with a
simultaneous isolation of a catalyst-free product mixture.
Catalyst—product separation can easily be achieved in
heterogeneous catalysis; however, solid catalysts of the
desired selectivity are simply not available for several
important catalytic transformations.

Many attempts have been made to combine the activity
and selectivity of soluble catalysts with the easy separation
of their solid counterparts. Until now, however, im-
mobilization on various solid supports has failed to
produce catalysts that are stable, active, and selective
enough (i.e., sufficiently economical) for large-scale ap-
plications. A more successful approach is in the use of
immiscible liquid phases, of which one dissolves the
catalyst and the other is composed of the substrate(s) and
product(s) or their solution in a suitable solvent (Figure
1).173 Upon thorough mixing, the catalyst and the sub-
strates react in the interphase region or in the catalyst-
containing phase, provided the substrates have sufficient
solubility in that phase. Consequently, the catalytic trans-
formation can still be regarded as a homogeneous reaction
with molecularly dispersed catalyst and substrates; how-
ever, by easy and well-known phase-separation tech-
niques, the catalyst can be recovered (continuously re-
cycled) in one of the liquid phases.

This method of liquid biphasic catalysis with a transi-
tion metal-based catalyst was first introduced to industry
by Shell in its SHOP process for production of higher
olefins by oligomerization of ethene.? In this particular
case, both phases are organic solutions: the Ni-containing
catalyst is dissolved in 1,4-butanediol, and the other phase
is composed of the compressed ethene, also dissolving
the product oligomers. Organic—organic biphase proce-
dures are still investigated in detail, and the possibilities
are largely expanded by the recent introduction of the
fluorous® biphase systems in which one of the phases
specifically is a perfluorinated alkane, amine, etc. Other
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unusual solvents such as supercritical fluids®® and ionic
liquids®¢ have also come to the scene of liquid biphase
catalysis recently. Nevertheless, far less expensive and
perhaps more akin to green chemical synthesis is the use
of water as one of the immiscible phases.>* Our first paper
on aqueous organometallic catalysis® was published in
1973, the same year in which the idea of liquid biphasic
catalysis' was suggested as a general means for hetero-
genizing homogeneous catalysts. Since then, an enormous
effort has been put into the development of catalytic
reactions in aqueous solutions and in biphasic mixtures
of water with other solvents, the most outstanding achieve-
ment being the Ruhrchemie—Rhéne Poulenc process for
the industrial hydroformylation of propene.’? These
studies revealed several peculiarities of aqueous biphase
catalysis, and the present Account summarizes our results
in this direction.

Water-Soluble Tertiary Phosphine Complexes
of Transition Metals and the Hydrogenation of
Olefins in Homogeneous Aqueous Solutions

Recent aqueous organometallic catalysis relies heavily
(although not exclusively) on the use of water-soluble
tertiary phosphine ligands. The obvious reason comes
from the most important role phosphine complexes play
in catalysis in organic solutions and from the aim of
creating closely similar catalytic systems working in aque-
ous media. Of the several hundreds of water-soluble
phosphines investigated to the present, sulfonated triph-
enylphosphine derivatives have attracted the most interest
because of their relatively easy synthesis. The sulfonate
groups remain deprotonated and noncoordinating in a
wide pH range. Consequently, the solubility and coordi-
nation properties of such ligands and their complexes are
not influenced by variations in pH, in contrast to water-
soluble phosphines with amino, hydroxyl or carboxylic
functions. The reaction of triphenylphosphine with fuming
sulfuric acid vyields sulfonated derivatives with —SO;~
groups in meta positions, such as Ph,P(CgH4-3-SO3M),
m-TPPMS,% (Figure 2); PhP(CgH4-3-SO3M),, m-TPPDS®®;
and P(CgH4-3-SO3M)s, m-TPPTS,% usually isolated as alkali
metal salts (M = Na* or K*). Complexes of ortho- and
para-sulfonated triphenylphosphines have also been ap-
plied in catalysis, as well as those of 1,3,5-triaza-7-
phosphaadamantane (PTA), a small, aliphatic tertiary
phosphine ligand (Figure 2).6¢ One of the three nitrogens
of this caged phosphine can be protonated (pK, = 6.0);
both PTA and PTAH™ are very soluble in water, as are their
metal complexes.

Reaction of RuCl;-xH,0 and RhClzxH,O with an excess
of m-TPPMS or PTA in refluxing ethanol provides [{ RuCl,-

(M-TPPMS),} 1,52 [RhCI(M-TPPMS);],%2 [RUCI,(PTA),],and
[RhCI(PTA);].” Using water or aqueous acids as solvents,
these complexes were found to be active in hydrogenation
of olefins either in solution (unsaturated acids, allyl
alcohol) or in dispersion (1-hexene, styrene, unsaturated
phospholipids).8® Hydrogenation of crotonic, maleic, and
fumaric acids at 25—60 °C proceeded with typical turnover
frequencies (TOF) of 100—700 h™* (mol converted substrate/
mol catalyst-h). These reaction rates and the basic kinetic
features®® were found to be similar to those of olefin
hydrogenations with the related [RuCl,(PPhs);] and [RhCI-
(PPhs3)s] complexes.’® However, important differences
between aqueous and organic solutions were also ob-
served, and some of these are discussed below.

Biphasic Transfer Hydrogenation of Aldehydes

Various aldehydes were found to undergo reduction to the
corresponding alcohols (eq 1) by hydrogen transfer from
sodium formate catalyzed by [{ RuCl,(m-TPPMS),},] (with
excess m-TPPMS),*t as well as by [RUCI,(PTA)4].” The
results in Table 1 demonstrate the efficiency of both
catalysts. Despite the need for mass transfer from the
organic phase to the aqueous one, initial turnover fre-
quencies with [{ RuCl,(m-TPPMS),} ] were generally >100
h=1, and with [RuCI,(PTA)4], >15 h~1. However, 2-hydroxy-
aldehydes (salicyladehyde, 2-hydroxy-1-naphthaldehyde)
were not reduced. Most notably, hydrogen transfer reduc-
tion of all unsaturated aldehydes afforded unsaturated
alcohols with 100% selectivity. Literature reports showed
the same selectivity of Ru—m-TPPTS catalysts with H; as
the hydrogen source.’? In contrast, [RhCI(m-TPPMS);] and
[RhCI(PTA)s] showed negligible activity in hydrogenation
of the aldehyde function; however, they efficiently cata-
lyzed the formation of saturated aldehydes (eq 2).

R—=CH=CH—CHO ) + HCOONa ;) + H,0(q) —
R—CH,~CH,~CHOyg,, + NaHCOyg) (2)

In these genuine biphasic reactions, the catalyst and
the reducing agent are dissolved in the aqueous phase
while the aldehyde is in the organic phase, either neat or
dissolved in a water-immiscible solvent. The reaction rates
are somewhat lower but comparable to those in the
analogous phase transfer catalytic (PTC) system (see
Figure 3), having the catalyst [RuCl,(PPhs)s], the substrate,
and products in the organic phase, and employing a
quaternary ammonium formate to facilitate the transfer
of HCOO~ from the aqueous to the organic phase.®®
Nevertheless, the data of Table 1 also illustrate the general
problem of liquid—liquid biphasic catalysis: under identi-
cal conditions, the extent of hydrogenation of butanal,
pentanal, and hexanal decreases substantially with their
decreasing solubility in the catalyst-containing aqueous
phase. The reactions are inhibited by an excess of the
substrate;”!* therefore, the reaction rates go through a
maximum with increasing aldehyde concentration (Figure
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Table 1. Catalytic Reduction of Aldehydes with
Hydrogen Transfer from Aqueous HCOONa

yield of alcohol, %?

substrate [Ru—mTPPMS]P [Ru—PTA°

benzaldehyde 99.7 64.0
4-methylbenzaldehyde 99.5 23.6
4-methoxybenzaldehyde 98.8 26.7
4-bromobenzaldehyde 99.8 16.3
2-naphthaldehyde 100 n.d.d
salicylaldehyde 0 0
butanal n.d. 72.8
pentanal n.d. 46.1
hexanal n.d. 23.0
2-butenal® 78f 87.6
citral &9 98 n.d.
citronellal® 93 n.d.
cinnamaldehyde® 98 21.2

a Determined by gas chromatography. ? 0.005 mmol of [{ RuCly(m-
TPPMS)3}2]; 0.1 mmol of m-TPPMS; 1 mmol of aldehyde (neat); 3
mL of 5 M HCOONa in water; 80 °C; reaction time, 1.5—7 h.
¢0.0625 mmol of [RuClz(PTA)4]; 1.35—6.93 mmol of aldehyde in 5
mL of chlorobenzene; 5 mL of 5 M HCOONa in water; 80 °C;
reaction time, 3 h. 9 Not determined. ¢ Exclusive formation of
unsaturated alcohols. f At 30 °C, isolated yield. 9 Mixture of ge-
ranial and neral 2:1; no isomerization was observed.
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FIGURE 3. Initial rates of the transfer hydrogenation of p-
tolualdehyde!® (@, [RuCly(PPhs)s], 50 °C, with phase transfer catalysis)
and benzaldehyde®* (M, [{ RuCl,(m-TPPMS),} ;] + m-TPPMS, 80 °C,
biphasic) by aqueous HCOONa.

3). In the PTC variant, in which the catalyst and the
substrate are found in the same phase, this maximum is
sharp, and the rate falls back to zero at relatively low
aldehyde concentrations. For practically useful reaction
rates, one must keep the aldehyde concentration low by
dilution with an organic solvent. Conversely, because of
the limited solubility of aldehydes in aqueous HCOONa
solutions, the [{RuCly(m-TPPMS),},] or [RUCI,(PTA)4]
catalysts remain active even when the organic phase is
composed of neat substrate. This is a clear example of
what is termed “protection by phase separation”, but in
this case, it is the catalyst that is protected against
substrate inhibition. At the end of the reaction, the organic
phase of the product and the catalyst-containing aqueous
phase can be easily separated. Elimination of the need of
an organic solvent, simple catalyst recycling, and the mild
conditions of isolation of the product with no contamina-
tion by the catalyst are valuable green features of this
biphasic reduction of aldehydes.

Effect of pH on the Selectivity

Selective reduction of unsaturated aldehydes to unsatur-
ated alcohols, as discussed above, is a rather unusual
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FIGURE 4. Mole fraction of [RuHCI(m-TPPMS)s] (O), [RuHy(m-
TPPMS)4] (O) and [{RuHCI(m-TPPMS),},] (&) as a function of pH,
determined by 'H and 3P NMR spectroscopy. [Ru] = 2.4 x 1072 M,
[m-TPPMS] = 7.2 x 1072 M, 0.2 M KCl, 50 °C, Hy, Piota = 1 bar.
Reproduced with permission from ref 15a. Copyright 1998, Wiley-
VCH.

finding for several reasons. First, there are only a few
homogeneous catalysts that are selective for the hydro-
genation of an aldehyde in the presence of an olefinic
bond.1® Second, [{ RuCl,(m-TPPMS),},] is an active catalyst
for C=C hydrogenation in olefinic acids.®® Furthermore,
[RuCl,(PPh3);] is known to catalyze the hydrogenation of
olefins with hydrogen transfer from mixtures of HCOOH
and alkali metal formates.'* The rationale of this apparent
contradiction was found in the effect of pH on the
formation of various hydridophosphine complexes of
Ru(ll).

Reaction of [{RuCl,(m-TPPMS),},] and H, in aqueous
solutions in the presence of excess m-TPPMS is ac-
companied by color changes and proton production. We
have studied these processes in detail both by pH poten-
tiometry and simultaneous H and 3P NMR investiga-
tions.’ The experiments revealed the formation of various
Ru(ll) hydrides (eq 3—5).

2 [{RUCI,(m-TPPMS) )] + Hy =

% [{RUHCI(M-TPPMS),},] + H* + CI~ (3)

1 [{RUCIly(m-TPPMS),},] + H, + m-TPPMS =
2 2 212 2
[RUHCI(M-TPPMS),] + H™ + CI~ (4)

[RUHCI(M-TPPMS),] + H, + m-TPPMS =
[RuH,(m-TPPMS),] + H" + CI™ (5)

Note that although formation of analogous hydride com-
plexes from [RuCl,(PPhg)s] in apolar organic solvents
requires the presence of a base (EtsN, 1,8-diaminonaph-
thalene, etc.),!° in agueous solutions, water itself plays the
role of a proton acceptor. Equilibria 3—5 are governed by
the actual concentration of hydrogen; therefore, the
distribution of ruthenium in the various hydrides is
strongly pH-dependent. In an excess of m-TPPMS, [{Ru-
HCI(m-TPPMS),},] is a minor species, whereas [RuHCI-
(m-TPPMS);] and [RuH,(m-TPPMS),] are almost exclu-
sively formed in strongly acidic and in strongly basic
solutions, respectively (Figure 4).
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FIGURE 5. Selectivity of the hydrogenation of cinnamaldehyde to
cinnamyl alcohol (®) and dihydrocinnamaldehyde (M) as a function
of pH. Conditions: 50 uL of cinnamaldehyde, 10 mg of [{RuCly(m-
TPPMS),} 2], 12 mg of [m-TPPMS], 5 mL of chlorobenzene, 3 mL of
0.2 M KCI buffered with Na,HPO4/NaH,PO,/HCI, 80 °C, Hy, Pt = 1
bar. Reproduced with permission from ref 15a. Copyright 1998 Wiley-
VCH.

As established earlier,® the active species for olefin
hydrogenation is [RUHCI(m-TPPMS),], formed in acidic
solutions by phosphine dissociation from [RuHCI(m-
TPPMS);], and therefore, the rate of C=C hydrogenation
decreases with increasing concentration of m-TPPMS.
Conversely, [RuH(m-TPPMS),] was found to be a selective
catalyst for the reduction of aldehydes. The reason for this
selectivity most probably is in the coordinative saturation
of [RuH,(m-TPPMS),], which prevents the coordination
of a C=C bond but allows the hydrogenation of aldehydes
by intermolecular nucleophilic hydride transfer. Catalysis
by a coordinatively saturated Ru species is also cor-
roborated by the lack of inhibition by excess phosphine;
in fact excess m-TPPMS increases the reaction rate,
probably because of its surfactant (hence, aldehyde solu-
bilizing) effect.!! (Interestingly, the catalytic activity of Ru—
m-TPPMS and Ru—PTA complexes in the formate reduc-
tion of aldehydes is influenced in a sharply different way
by an excess of the phosphine ligand. Unlike m-TPPMS,
excess PTA inhibits the reaction,” and when prepared from
[Ru(H,O)g](tos), + PTA (tos = 4-toluenesulfonate), the
catalyst shows a maximum activity at [PTA]/[Ru] = 3. The
easy formation of [RuH(PTA)s]" may contribute to the
decrease of reactivity at high PTA concentrations; a similar
pentakisphosphino complex is not formed with the bulky
m-TPPMS ligand.'6)

Since the same [{RuCl,(m-TPPMS),},] + m-TPPMS
precatalyst can yield either [RUHCI(m-TPPMS);] or [RuH,-
(m-TPPMS),] in acidic or in basic aqueous solutions,
respectively, the selectivity of the reduction of unsaturated
aldehydes can be switched from C=0 to C=C reduction
by simple pH manipulations. Figure 5 shows an example,
when hydrogenation of cinnamaldehyde at pH 9 resulted
in formation of cinnamyl alcohol; however, upon acidi-
fication to pH = 3 the same reaction mixture afforded
3-phenylpropanal as the major product.

It is not at all surprising that Ru(ll) complexes with
para-monosulfonated triphenylphosphine ligands show
reactivity closely related to that of their m-TPPMS-
containing analogues. Nevertheless, para sulfonation re-
sults in a considerably smaller steric bulk, as shown by

Ay [
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FIGURE 6. Initial rate of the biphasic hydrogenation of acetophe-
none as a function of the relative amount of the aqueous phase:
water (@) or 05 M [Et;N-HCI] (a). [RhCI(PPhg)s] = 2.0 x 1072 M,
[substrate]/[catalyst] = 435, [EtsN])/[Rh] = 2, 50 °C, H,, Pyt =
1 bar.

the respective Tolman cone angles: p-TPPMS, 137.7° and
m-TPPMS, 177.6°. As a consequence, formation of the
tetrakisphosphino species [RuH,(p-TPPMS),] can be ob-
served already in slightly acidic solutions (its mol fraction
at pH 6 is ~20%, as compared to ~0% for [RuH,(m-
TPPMS),]), and the shift of selectivity from C=C to C=0
bond hydrogenation in cinnamaldehyde also starts at
lower pH (~pH 3).'7

The selectivity observed in the ruthenium-catalyzed
transfer hydrogenation of aldehydes with aqueous formate
solutions can be easily rationalized now by recalling that
the pH of the routinely used 5 M sodium formate solutions
is 7.8 and slightly increases with increasing conversion
(NaHCO; formation). At this pH, the dominant species is
[RuH,(m-TPPMS),], which leads to exclusive formation of
unsaturated alcohols.

Hydrogenation of Acetophenone in Agueous
Biphasic Systems Catalyzed by [RhCI(PPhs)s]

Wilkinson’s catalyst is not active in hydrogenation of
ketones; however, in the presence of suitable bases, such
reactions may take place.®® Although in hydrogenation
of acetophenone both the substrate and the catalyst are
insoluble in water, we observed that the presence of a
separate aqueous phase still resulted in a substantial
acceleration of hydrogenation, and the reaction rate
increased with increasing volume of the aqueous phase
(Figure 6).2° An efficient reaction required the presence
of a base (Et3N or 1,5-diazabicyclo[4.3.0]non-5-ene). Pre-
pared from [{RhCI(COD)},] + nPPhg, the catalyst’s activity
showed a distinct maximum at [P]/[Rh] = 3. These
phenomena can be rationalized by assuming the real
catalytic species is [RhH(PPh3);], formed according to eq
6.

[RhCI(PPhy),] + H, + Et,N =
[RhH(PPh,),] + Et;NH* + CI~ (6)

In homogeneous organic solutions, this equilibrium can
be made complete with an excess of NEt;. However, in
water—benzene mixtures, triethylamine hydrochloride
dissolves preferentially in the aqueous phase, shifting the
equilibrium toward the formation of [RhH(PPhj);]. Indeed,
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under the conditions of Figure 6, up to 85% of chloride
was found in the aqueous phase by titration with
Hg(NOg),. Below its solubility limit, water itself has no
effect; however, increasing its volume relative to that of
benzene facilitates the distribution of more and more ClI~
into the aqueous phase, thereby increasing the concentra-
tion of [RhH(PPhg);] in the organic phase, resulting in
higher rates of hydrogenation. This suggestion is also
supported by the finding that when a 0.5 M Et3N-HCI
solution was used as the aqueous phase, no increase of
the rate was produced (Figure 6). Aqueous—organic bi-
phasic systems are superior to the widely used methanol
or benzene—ethanol mixed solvents in that there are no
hydroxide or alkoxide ions in the organic phase that could
lead to the formation of hydroxo- or alkoxorhodium
complexes.

Base dehydrochlorination?°? of neutral [RhH,XL,] and
deprotonation®® of cationic [RhH,S,L,]" (S = solvent)
complexes play important roles in catalysis, and in aque-
ous solutions, these can be also finely tuned with careful
manipulation of pH. By combined pH potentiometry and
IH and 3P NMR measurements, we have shown that
hydrogenation of [RhCI(m-TPPMS);] affords either [RhH,-
CI(m-TPPMS);] or [RhH(M-TPPMS)3(H,0)] below and
above pH 8.2, respectively.?! Formation of the important
hydroformylation (pre)catalyst, [RhH(CO)(m-TPPMS)z] from
[RhCI(CO)(m-TPPMS),], m-TPPMS, and H, is also strongly
pH-dependent: no reaction takes place below pH 5, and
the reaction nears completion only above pH 9. Such
equilibria may contribute to the known increase of the
rate of hydroformylations with increasing pH in agueous
biphasic systems.??

Dehalogenation of Organic Halides by Catalytic
Hydrogen Transfer from Aqueous HCOONa

An important problem in environmental protection is the
dehalogenation of organic halides, which is often effected
by catalytic hydrogenolysis of the relevant C—X bonds. We
have found that [{ RuCl,(m-TPPMS),},] + m-TPPMS and
[Ru(H,0)3(PTA);](tos), were suitable catalyst precursors for
hydrodehalogenation of organic halides with sodium
formate as the hydrogen source (eq 7 and Table 2).23

R—X(org) + HCOONa,q) + H,0 (1) —
R—Horg) + NaX gy + COygy (7)

Carbon tetrachloride, chlorofom, and benzyl chloride were
highly susceptible to hydrogenolysis; however, hydrode-
halogenation of dichloromethane was not observed. Hexyl
and cyclohexyl halides reacted slowly, showing the ex-
pected order of reactivity (I > Br > CI). Chlorobenzene
could not be dehalogenated. Radical scavangers slowed
the reaction of CCl, but did not stop it completely. The
reaction proceeds with much inferior rates when H, is
used as the hydrogen source. As an example, under the
conditions of Table 2, only 2% conversion of CCl, to CHCl;
was detected under 5 bar H,, instead of 55% with
HCOONa (reaction time, 3 h). Aqueous solutions of
HCOONH,, HCOONa + HCOOH (1:1), and Na,HPO, could
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Table 2. Catalytic Dehalogenation of Organic Halides
with Hydrogen Transfer from Aqueous HCOONa

initial rate, h-12

substrate [Ru—mTPPMS]P [Ru—PTA]®
carbon tetrachloride 478 88
chloroform 80 6
benzyl chloride 291 n.d.d
1-Cl-hexane 3 46
1-Br-hexane 10 56
1-1-hexane 68 86
Cl-cyclohexane 2 5
Br-cyclohexane 16 10
chlorobenzene 0 0

a2 Turnover frequency: mol converted substrate/mol catalyst-h,
determined by gas chromatography. ° 5.5 x 1073 mmol of [{RuCl,(m-
TPPMS)3}2], 0.05 mmol of m-TPPMS, 8 mmol of substrate, 25
mmol of HCOONa, 15 mL of water, 80 °C.¢5 x 1073 mmol of
[Ru(H20)3(PTA)s](tos)2, 8 mmol of substrate; 25 mmol of HCOONa,
5 mL of water, 80 °C. 4 Not determined.

also be used; however, in the latter two cases, the
hydrogen donors were partially decomposed (as shown
by increased reactor pressures), and somewhat diminished
yields of CHCI; were obtained (28% and 31%, respectively).
In the case of HCOOH, a fast catalytic decomposition
occurred that prevented efficient hydrodehalogenation
(CHCI; yield 4%).

These biphasic hydrodehalogenations utilizing HCOONa
as the H source proved more efficient than the related
processes catalyzed by [RuCl,(PPhg);] in homogeneous
organic solutions (CCly, xylene—ethanol, H,, 25 °C: 64
catalyst turnovers in 5 days; CsHsCH,Cl, dioxane, HCOOLI,
reflux: 26 turnovers in 6 h).?* In addition, the aqueous—
organic biphasic approach allows the separation of the
water-soluble catalyst from the organic products, albeit
the process is biased by a relatively fast catalyst deactiva-
tion® and by the accumulation of HX or halide salts in
the aqueous phase.

Deuteration of Lipid Disgersions Using D,0 as
Deuterium Source and the Catalysis of H/D
Exchange in Water

Aqueous dispersions of phospholipids (liposomes) are
microheterogeneous biphasic systems that are often used
as synthetic models of biomembranes. Soybean lecithin,
one of the most readily available phospholipids, contains
large proportions of linoleic (59%) and linolenic (8%) acid
residues (18-carbon fatty acids with two and three C=C
bonds, respectively). Catalytic hydrogenation of the un-
saturated acyl moieties within such liposomes was studied
with several catalysts?® in order to get more insight into
the details of the hydrogenation of native biomembranes
(in many case, those of living cells). Hydrogenation? or
cis-to-trans isomerization?’ of the C=C bonds in mem-
brane lipids results in controlled alterations of the mem-
brane physical state. Therefore, this method gives a unique
possibility of studying the relation of membrane fluidity
to the functioning of various enzymes and the ability of
living organisms to tolerate environmental stress (sudden
changes in temperature, osmotic pressure, etc.).'2%> How-
ever, our studies also shed some light on the mechanism
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of hydrogenations by the respective catalysts in these
unusual reaction mixtures.

When liposomes of soybean lecithin (1 mg/mL) were
prepared in phosphate buffer (pH = 4.70) and hydroge-
nated (H;, 1 bar) using the [RhCI(PTA);] catalyst (1 mM),
34% of all double bonds were saturated in 40 min at 37
°C.28 With D, instead of H,, extensive deuteration was
observed, leading to a mixture of products of both
symmetric and unsymmetric D, addition (eq 8; for sim-
plicity, the lipid is represented as a general olefin).

R'CH=CHR" + D, —
R'CHD—CHDR" + R'CH,—CD,R" + R'CD,—CH,R"
1

2 3
(8)

Interestingly, deuterium was also incorporated into the
products with H, in D,O solutions but only -CHD- and
no -CD,- units were detected by FT-IR spectroscopy
(because of the presence of a large number of -CH,- units
in the native lipid, this technique does not distinguish
R'CHD—CHDR", 1, from R'CHD—-CH,;R" or R'CH,—
CHDR").

According to 'H and 3P NMR measurements, the
reaction of H, and [RhCI(PTA)3] in acidic and neutral
aqueous solutions yields stereoisomers of [RhH,CI-
(PTA)3];°*2° by analogy, we assume the formation of [RhD,-
CI(PTA)3] under D,. A concerted transfer of the two D~
ligands to the olefin should yield 1. Formation of unsym-
metrically deuterated products, such as 2, is possible in
sequential addition, s-hydride elimination steps (eq 9, [Rh]
stands for [RhCI(PTA)z]).

[D,Rh] + RCH=CHR" =
[DRh—CH(R')—CH(D)(R")] =
[D(H)Rh] + R'CH=CDR" =
[HRh-CH(R')—CD,(R")] — [Rh] + 2 (9)

In D,O, under H,, deuteration of the products can take
place on two pathways. One involves a fast H—D exchange
in [H;Rh], producing [(D)HRh] and [D,Rh], and in this
case, any of the possible products can be expected in the
product mixture. The other possibility is the formation of
[HRh(PTA)z] in a fast dehydrochlorination of [H,RhCI-
(PTA);3]. Incorporation of D could then be the result of
deuteriolysis (eq 10) of the Rh-alkyl intermediate obtained
by addition of the olefin across the H—Rh bond; in this
case, only monodeuteration is expected.

[(PTA),Rh—CH(R)-CH,(R")] + D" —
R'CHD—CH,R" + "[Rh(PTA),]"™ (10)

To establish the contribution of the possible pathways,
we studied the formation of the various Rh—PTA hydrides,
as well as the catalysis of H—D exchange in H,O by [RhCI-
(PTA)3]. It was found that dehydrochlorination of [H,RhCI-
(PTA);] takes place only in highly basic solutions (pH >
10),%° so [HRh(PTA);] is unlikely to play a major role in
deuteriation of soybean lecithin at pH 4.7. Conversely, in
acidic solutions, [RhCI(PTA);] was found to be an active

catalyst of the H—D exchange in water®® (with both D,/
H,0 and H»/D,0, a turnover frequency of up to 900 h—*
at 70 °C), which seems to favor the deuteration proceeding
via an H—D exchange on rhodium. Nevertheless, one
should be careful with the conclusions, since the presence
of an olefin can substantially influence the processes. In
a related system using [{RuCl,(m-TPPMS),},] + n m-
TPPMS as catalyst, addition of maleic acid resulted in a
complete halt of an otherwise fast H—D exchange in water,
and isomerization to fumaric acid became the major
reaction.*

Already, in one of the earliest studies on aqueous
organometallic catalysis, a slow H/D exchange was ob-
served upon catalysis by ruthenium(ll) chloride (TOF =
2 h™1 at 80 °C).3! The very high activity of [RhCI(PTA)3] in
the same reaction stresses again that in aqueous organo-
metallic catalysis, water is not always innocuous; it may
also be a reactive medium. This should be kept in mind
when designing synthetic reactions in aqueous—organic
biphasic systems.

Conclusions

Aqueous—organic biphasic processes offer relatively simple
and general solutions to the problem of efficient recycling
of soluble catalysts together with easy product isolation.
One of the central questions to all biphasic reactions is
the solubility and phase distribution of the components
of the catalytic system (solvent liquids, substrates, prod-
ucts, gases, catalyst). A unique feature of aqueous—organic
two-phase catalysis is in the omnipresence of H* and OH™;
their actual concentration (i.e., the pH) determines the
stability of organometallic catalysts and intermediates in
aqueous solution, hence influencing the outcome of the
catalytic reaction.

Green Context and Future Directions

The use of aqueous—organic biphasic solvent mixtures for
homogeneous catalysis is in line with the fundamental
principles of green chemistry. It allows the use of catalytic
processes with a mild method of product isolation and
catalyst recycling (liquid—liquid phase separation instead
of distillation) resulting in fewer byproducts. In cases in
which the substrate forms a separate organic phase, the
need for an organic solvent can be eliminated. Phase
separation contributes to the protection of both the
substrates/products and the catalyst against side reactions
(degradation), thereby resulting in an increased selectivity.
In reactions governed by acid—base equilibria, aqueous—
organic biphasic processes allow the fine-tuning of selec-
tivity by proper manipulation of the pH of the aqueous
phase.

The past decade has witnessed the rapid expansion of
research on liquid biphasic catalysis in various mixtures
of organic, fluorous, supercritical, and ionic liquids. In
addition to the possibility of developing two-phase cata-
lytic systems with any of these solvents and water, the
enormous experience derived from the study of aqueous
systems (catalyst modification, reaction kinetics, etc.) will
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be of high value in research on any biphasic process.
Furthermore, water is still the cheapest and the most
abundant and environmentally benign solvent; therefore,
aqueous—organic biphasic catalysis will secure for many
years its contributions to biphasic applications of transi-
tion-metal catalysis in solution.

| am deeply indebted to all my students and co-workers who
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I highly appreciate the stimulating joint work with LaszI6 Vigh
and lIbolya Horvath (Biological Research Center, Hungarian
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continuous support by the National Research Fund (OTKA) of
Hungary (research grants) and of Johnson Matthey (JM) Ltd.
(precious metal loans) are gratefully acknowledged.
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